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Bifurcation Analysis of Toxoplasmosis Epidemic
Control on Increased Controlled Rate of
Suppressing the Rate of Infected Births

Meri Hari Yanni and Zulfahmi

Abstract—The toxoplasmosis epidemic is an infectious disease
caused by the parasitic Toxoplasma Gondii. This disease attacks
the human immune system and other organs in the body, result-
ing in damage to tissues. The spread of the disease is carried out
in various ways, one of them is eating foods that are less hygienic
or not cooked properly, resulting in parasites remain active.
Provision of controlled therapy is one solution in controlling
the epidemic against suppression of the birth rate infected with
toxoplasmosis. This study discusses the bifurcation analysis of a
mathematical model for controlling the toxoplasmosis epidemic.
Bifurcation analysis is carried out on the controlled rate and rate
of birth control of toxoplasmosis. From the mathematical model
of controlling the toxoplasmosis epidemic, stability and existence
analysis are performed at each equilibrium point. Next, a function
of two independent parameters is constructed which influences
the spread of the disease, namely the controlled rate and the rate
of infected births. Then, a bifurcation analysis of each region is
obtained from each function of the two free parameters. From
the bifurcation analysis, three regional conditions were obtained
which showed the dynamics of the toxoplasmosis epidemic of
two independent parameters with each interpretation of the
bifurcation region.

Index Terms—Stability and existence analysis, bifurcation
analysis, interpretation of bifurcation analysis for each region.

I. INTRODUCTION

TOXOPLASMOSIS is a disease caused by the parasitic
toxoplasma gondi, with the main source of its develop-

ment being felidae animals. Parasites produced from cat feces
that have sporulated in a free environment [1]. While in hu-
mans, and mammals as intermediaries host in the development
of parasites. The spread of disease occurs through a variety
of ways, one of which is the habit of eating food without
washing hands, then eating fruits and vegetables that are less
clean washed and eating foods that are undercooked.

The spread of Toxoplasmosis disease can occur worldwide.
In Colombia, the research has been conducted using hybrid
model of the spread of Toxoplasmosis between two countries
[2]. The research focuses on the disease in the initial condition,
during and after the diagnosis and treatment to reduce the
potential of other individuals affected by the disease so that
the strategy for public awareness in consuming healty food and
drink and direct attention to the cat subpopulation. Further-
more, in Indonesia at the year 2010 reported that the number
of prevalence rate of toxoplasmosis in the community in Banda
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Aceh is 3.15 % [3]. The habits of the people in Aceh city is the
habit of eating satay and grilled chicken that is undercooked.
These habits can have a harmful impact on the people of Aceh,
including neurological disorders such as the brain, muscles
and eyes, causing Alzheimer’s and schizophrenia [4]. Whereas
in pregnant women resulting in abortion, premature death
in the fetus, and abnormalities in the baby. So that further
socialization and analysis is needed regarding the spread of
toxoplasmosis in the Lhokseumawe city community to reduce
the number of individuals infected with toxoplasmosis in the
future.

Research related to the spread of toxoplasmosis has been
done and will continue to be developed with various perspec-
tives and problems that occur in the community. Researchers
have also conducted research that discusses several conditions
that greatly affect the spread of toxoplasma gondi in the
human body [5]. The study resulted in several conditions
affecting the spread of disease in the human body with an
indirect interaction by the definitive host.This research is also
strengthened by research on the dynamics of the mathematical
model of toxoplasmosis [6], which is then developed by taking
into account interactions that occur in humans with cats in a
region [7], [8] and the dynamics of the model of the spread of
toxoplasmosis from spools of cats that have been sporulated
[9]. Research on controlling the toxoplasmosis epidemic with
case studies in the city of Lhokseumawe has been conducted
[10]. In this research, researchers are developing on bifurcation
analysis was carried out by releasing two parameters that
affect the epidemic, so that the behavior obtained from the
dynamics of the toxoplasmosis epidemic from various regional
conditions.

The purpose of this study was to look at the dynamics of the
toxoplasmosis epidemic through increasing the controlled rate
by suppressing the rate of births infected with toxoplasmosis.
Bifurcation analysis is performed to determine the behavior of
the toxoplasmosis epidemic from each condition of the formed
bifurcation area. Next, an interpretation of each bifurcation
area was carried out which described the dynamics of the
spread of toxoplasmosis in the Lhokseumawe city area.

II. METHODS

This research is a theoretical and applied research study.
Theoretical studies are carried out through a review of bi-
ological and medical literature relating to the epidemic of
toxoplasmosis. Literature review is used in the formation of
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Fig. 1: Transfer diagram of the toxoplasmosis epidemic model.

mathematical models that first construct concepts in accor-
dance with the facts of the epidemic. This study also conducted
interviews with speakers, namely SpOG specialists related to
toxoplasmosis. The data used in this study are secondary data
on the number of patients with toxoplasmosis in 2018 at
the hospital Cut Mutia, and other supporting data were also
obtained from the Lhokseumawe City Health Office in 2018.

The first stage in this research is constructing a mathemat-
ical model of the toxoplasmosis epidemic in Lhokseumawe
City. In constructing a mathematical model, the assumptions
and criteria in the research variables were then tested and re-
vised through interviewees. Next, analyze mathematical mod-
els analytically and numerically. The analysis was performed
by determining the equilibrium point of the mathematical
model, determining the stability criteria of the mathematical
model, determining the basic reproduction numbers and deter-
mining the bifurcation limits of the occurrence of the toxoplas-
mosis epidemic. In the next stage, numerical simulations were
conducted based on patient data that had been collected from
the Hospital and the Health Service. Simulations were carried
out to see the dynamics of the toxoplasmosis epidemic from
each region with two parameters that influence the epidemic.
Then proceed with interpreting the dynamics that appear in
each region.

III. MODEL FORMULATION

A. Construction of the Toxoplasmosis Epidemic Model

The assumptions used in the formation of a mathematical
model of the toxoplasmosis epidemic, are as follows:

1) In vulnerable populations, transmission occurs / spread
horizontally.

2) Treatment is given to actively infected individuals.
3) When the immune system goes down, it allows vulner-

able individuals to regain control.
4) Mothers infected with Toxoplasmosis can give birth to

babies infected with Toxoplasmosis.
The mathematical model of the toxoplasmosis epidemic is

represented in the following transfer diagram:
From Fig. 1, it can be seen that the human population

is divided into SIC subpopulations. Interactions between the
three populations in the toxoplasmosis epidemic model are
presented in the form of an unusual differential equation as
follows:

dS
dt

= ζ −θS−ηSI +ξC,

dI
dt

= ηSI− (ϕ +θ)I +σ I− τI,

dC
dt

= τ−θC−ξC. (1)

The mathematical model above is expressed in the form of
a non-linear differential equation, which satisfies the initial
conditions of each variable is positive and each parameter in
the System (1) is positive, S(0) ≥ 0, I(0) ≥ 0, and C(0) ≥ 0,
with the parameters used as follows:
• ζ = rate of birth,
• θ = natural death rate,
• η = toxoplasmosis infection rate,
• ξ = the rate of controlled individuals becoming vulnerable

individuals,
• ϕ = rate of death due to Toxoplasmosis,
• τ = controlled individual rate,
• σ = the rate of birth that has been infected with Toxo-

plasma.

B. Equilibrium Points and Basic Reproduction Numbers

The Equilibrium Point in the System (1) is obtained by
solving the equation dS

dt =
dI
dt =

dC
dt = 0 so that it produces two

equilibrium points namely the equilibrium point when there is
no spread of toxoplasmosis in the community q0 =

(
ζ

θ
,0,0

)
and the point of equilibrium when the spread of toxoplasmosis
in the community q1 = (S∗, I∗,C∗), where S∗ = ϕ+τ+θ−σ

η
, I∗ =

ζ (θ+ξ )−θS∗(θ+ξ )
ηS∗(θ+ξ )−ξ τ

, C∗ = τ

(
ζ−θS∗

ηS∗(θ+ξ )−ξ τ

)
.

Theorem 1: If ϕ + τ + θ > σ , ζ (θ + ξ ) > θS∗(θ + ξ ),
ηS∗(θ + ξ ) > ξ τ and ζ − θS∗ > 0, then the endemic equi-
librium point q1 exists.

The basic reproduction number (R0) in this study uses
the next generation operator approach method. First is the
grouping of sub populations from (1) into compartments X ,
Y and Z:

dX
dt

=

[
ζ −θS−ηSI +ξC

τ−θC−ξC

]
= f (X ,Y,Z),

dY
dt

= 0 = g(X ,Y,Z),

dZ
dt

= ηSI− (ϕ +θ)I +σ I− τI = k(X ,Y,Z). (2)

Then the functions of k(X ,Y,Z) are derived from I, so that we
obtain

dk
dt

(X∗,g(X∗,Z),Z) = ηS− (ϕ +θ)+σ − τ. (3)

Disease-free equilibrium point q0 =
(

ζ

θ
,0,0

)
, so (3) becomes

A = η
ζ

θ
− (ϕ +θ)+σ − τ

=

(
η

ζ

θ
+σ

)
− (ϕ +θ + τ)

The basic reproduction number R0 =MD−1, with M =η
ζ

θ
+σ

and D = ϕ +θ + τ , so that we obtained

R0 =
η

ζ

θ
+σ

ϕ +θ + τ
. (4)
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C. Stability Analysis of the Model Around the Equilibrium
Points

From System (1), the stability of the model will be inves-
tigated around the disease-free equilibrium point and disease
spread. Because System (1) is a system of nonlinear differ-
ential equations, it is first linearized for the equilibrium point
qo =

(
ζ

θ
,0,0

)
, where when I = 0, and C = 0 the following

Jacobian matrix is obtained.

Jqo =

−θ
−ηµ

θ
ξ

0 −ηµ

θ
−ϕ− τ−θ +σ 0

0 τ −θ −ξ


The characteristic equation of the Jacobian matrix Jqo is

determined by equation
∣∣Jqo −λ I

∣∣= 0 where I is the identity
matrix. Thus, the eigen values λ1 = −θ , λ2 = −θ − ξ , and
λ3 = −ηµ

θ
−ϕ − τ − θ +σ with each eigenvalue is negative,

the equilibrium point qo is locally asymptotically stable.
Furthermore, for the stability of the model around the

equilibrium point of the spread of the disease first lineariza-
tion of the equation system (1) with the equilibrium point
q1 = (S∗, I∗,C∗), is obtained, the following Jacobian matrix
Jq1
−θ −

η(ζ (θ+ξ )−θ(θ+ξ ))
(

ϕ+τ+θ−σ

η

)
ϕ+τ+θ−σ−ξ τ

−(ϕ + τ +θ −σ) ξ

η(ζ (θ+ξ )−θ(θ+ξ ))
(

ϕ+τ+θ−σ

η

)
ϕ+τ+θ−σ−ξ τ

0 0
0 τ −θ −ξ


obtained the characteristic equation from the Jacobian ma-

trix Jq1 as follows.

λ
3 +λ

2 (2θ +ξ +P)+λ ((θ +ξ )(θ +P)+PM)−
(ξ τP+(θ +ξ )PM) = 0

where M = ϕ + τ + θ − σ , and P =
η(ζ (θ+ξ )−θ(θ+ξ ))

(
ϕ+τ+θ−σ

η

)
ϕ+τ+θ−σ−ξ τ

.
In determining the eigenvalue of equation (3) the calcula-

tions performed by Yan-Bin [9] are used by assuming each
coefficient of equation (3) with A = 1, B = (2θ +ξ +P),
C = ((θ +ξ )(θ +P)+PM), and D = −(ξ τP+(θ +ξ )PM),
so equation (3) becomes

Aλ
3 +Bλ

2 +Cλ −D = 0. (5)

The roots in equation (4) are as follows

λ1 =−
1

3A

(
B− Π

2
+

2
(
3CA−B2

)
Π

)

λ2 =−
1

3A

(
B+

Π

4
+

(
3CA−B2

)
Π

−

i
√

3
2

(
Π

2
+

2
(
3CA−B2

)
Π

))
(6)

λ3 =−
1

3A

(
B+

Π

4
+

(
3CA−B2

)
Π

+

i
√

3
2

(
Π

2
+

2
(
3CA−B2

)
Π

))

TABLE I: Value of Parameters in Numerical Simulation

Parameter Score

ζ 0.898986
θ 0.004971213
η 0.001505714
ξ 0.000123
ϕ 0.000162335

with,

Π =
(

Ω+12
√

3
√

Φ

) 1
3

Ω = 36CBA−108DA2−8B3

Φ = 4AC3 +C2B2−18CBAD+27D2A
2
+4DB3

Next, to determine the eigenvalue of equation (6) so that
the real value is negative and stable asymptotically local it is
seen that there are two conditions namely when Π > 0 and
when Π < 0 which in each condition has the conditions for
Φ = 0 and Φ > 0. With the fulfillment of the given conditions

and the terms B > Π

2 −
2(3CA−B2)

Π
or B > −Π

4 +
(3CA−B2)

Π
are

met, then taking into account the real part of eigenvalues λi,
obtained Re(λi)< 0, i = 1,2,3. Based on the results obtained,
namely λ1 < 0, λ2 < 0, and λ3 < 0 the equilibrium point of
the toxoplasmosis q1 epidemic is asymptotically stable.

D. Bifurcation Analysis

Bifurcation analysis occurs at the point of equilibrium free
of disease and disease infection. Through the conditions of
existence and stability at the equilibrium point, it is possible
to bifurcate at specified regional boundaries. The bifurcation
analysis was carried out on two parameters namely the σ

parameter and τ parameter. Several other parameters in System
(1) will be of fixed value so that only the parameters used in
bifurcation are free. In Table (I), a fixed value is given for each
parameter used in the bifurcation analysis of the mathematical
model of controlling the toxoplasmosis epidemic.

Based on the conditions of existence and the stability criteria
of the equilibrium point for the two parameters; σ and τ by
setting the value of the other parameters, a function in the
variables σ and τ is formed as follows.

E. Function of Parameters S1,2,3,4 = 0

From the existence of the equilibrium point in Theorem 1
and the stability criteria for endemic equilibrium points, the
following parameter functions are obtained:

For example

S1 = ϕ + τ +θ −σ = 0
⇐⇒ ϕ + τ +θ = σ

⇐⇒ 0.000162335+ τ +0.004971213 = σ

⇐⇒ 0.005134+ τ = σ

So that the parameter function is obtained in the form S1 = 0
: 0.005134+ τ−σ = 0.
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Fig. 2: Bifurcation Diagram Two.

Furthermore, the same method / procedure is performed
to calculate the other parameter functions, namely S2 =
0 : 0.004493285 − 0.005094τ + 0.005094σ = 0, S3 = 0 :
0.88203726 − τ + σ = 0, and S4 = 0 : 0.0000261514 +
0.004971213τ−0.005094σ = 0.

From the parameter function above, it is sketched in the
Cartesian plane with τ as abscissa and σ as coordinates.
This sketch is called a parameterization diagram or bifurcation
diagram with the following illustration.

Figure 2 shows the topological inequality in the area
bounded by S1 = 0, S2 = 0, S3 = 0, and S4 = 0 by freeing the
two parameters τ and σ . When the area bounded by S1 = 0,
S2 = 0, S3 = 0, and S4 = 0, so then eight regions are obtained
which allow changes in each of the equilibrium points and
the stability of the equilibrium points in each region. The
dynamics of each region will show the movement of the
controlled rate of the spread of toxoplasmosis and the rate
of births infected with toxoplasmosis.

IV. NUMERICAL SIMULATION

Based on the parameter values given in Table I, the numeri-
cal simulation of System (1) in Region I with parameter values
τ = 0.9 and σ = 0.00000983845 shows that region I has no
equilibrium point. The same thing also happened in Region
II and III, when given a parameter value τ = 0.88205013
and σ = 0.000032 indicates that Region II has no equilibrium
point. Similarly, when given a parameter value τ = 0.65 and
σ = 0.006 shows that Region III has no equilibrium point.

In Region IV, parameter values τ = 0.271 and σ = 0.00121
are given. From the calculation of these parameter values
show that in Region IV has one equilibrium point that is
qo(179,0,0,). Furthermore, for the stability criteria for the
equilibrium point qo the value of λ1 = −0.0497121, λ2 =
−0.18787005, and λ3 =−0.00509421 show that the stability
criteria for the equilibrium point qo is locally asymptotically
stable. Numerical simulations for phase portraits in region IV
are given in the following figure.

Figure 3 shows that when some initial values are taken
around the solution qo it will go to the equilibrium point
qo(179,0,0,), so that the qo point is asymptotically stable. The
dynamics that can be seen from this condition is the absence of
the spread of toxoplasmosis in the Lhokseumawe community.

Furthermore, in the Region V parameter values τ = 0.27 and
σ = 0.06834 are given. From the calculation of the parameter
values, it shows that in the Region V the equilibrium point
changes from the Region V to the endemic equilibrium point

Fig. 3: Portrait of System (1) Phase in Region IV.

Fig. 4: Portrait of System (1) Phase in Region V.

q1(134,1,63). Furthermore, for the equilibrium point stability
criteria q1 obtained value λ1 =−0.003992, λ2,3 =−0,003934,
this value indicates that the equilibrium point stability criteria
q1 is locally asymptotically stable. Numerical simulations for
phase portraits in region V are given in the following figure.

In Fig. 4 it can be shown that for a different initial value
when t the solution moves away from the qo point and the
solution goes to q1. The dynamics that can be seen from this
condition is the beginning of the spread of the disease tox-
oplasmosis in the Lhokseumawe community. This condition
is the beginning of the spread of disease in the community
environment, it can be shown by the small number of people
infected with toxoplasmosis in humans, as many as 1 person.
Whereas the controlled population shows that many people are
starting to become aware of the spread of toxoplasmosis. This
is shown in the number of controlled population of 63. Thus, in
this condition the spread of toxoplasmosis in the environment
can be controlled by the community in the face of spreading
the disease.

Furthermore, in Region VI the parameter values τ = 0.063
and σ = 0.05134 are given. From the calculation of these
parameter values show that in Region VI has one endemic
equilibrium point q1(8,83,1032). Furthermore, for the equilib-
rium point stability criteria q1 obtained value λ1 =−0.129906,
λ2,3 = −0.002929, Furthermore, for the equilibrium point
stability criteria q1 is locally asymptotically stable. Numerical
simulations for phase portraits in area VI are given in the
following figure.

In Fig. 5, it can be shown that for a different initial
value when t the solution goes to point q1. The dynamics
that can be seen from this condition is the increase in the
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Fig. 5: System Phase 1 portrait in Region VI.

Fig. 6: Portrait of System Phase 1 in Regions VII and III.

spread of toxoplasmosis in the Lhokseumawe community. This
condition shows that the spread of disease in the environment
is increasingly widespread, resulting in the number of people
infected, is amounting to 83 people. This is a very large for an
infected environment, because it will have a very dangerous
impact on humans in the future. Thus in this condition the
handling of disease control must be carried out, one of
which is to carry out treatment and socialization related to
toxoplasmosis.

Furthermore, in Region VII and Region VIII have the
same conditions, if given a parameter value τ = 0.35 and
σ = 0.08704. From the calculation of these parameter values
show that in this Region has a change in the equilibrium
point that is from the equilibrium point q1 to one equilibrium
point q0 with a value q0 = (174,0,8). Furthermore, for the
stability criteria for the equilibrium point q0 the value of
λ1 =−0.00497121, λ2 =−0.157112, and λ3 =−0.00509421
shows that the equilibrium point stability q0 is locally asymp-
totically stable. Numerical simulations for phase shots in this
area are given in the following figure.

In Fig. 6, it can be shown that for a different initial value
when t the solution goes to point q0. The dynamics that can
be seen from this condition is when there is an increase in the
controlled rate, it can suppress the rate of births infected with
toxoplasmosis. This can be seen from the number of infected
humans at 0, it means that in this condition toxoplasmosis can
be removed from the population (cured). Thus, an increase in
the controlled rate is very important to reduce the spread of
toxoplasmosis in the Lhokseumawe community.

V. CONCLUSIONS

Based on the simulation results above, it is concluded
that the mathematical model of the epidemic toxoplasmosis
consists of three populations, namely vulnerable populations,
infected populations and controlled populations with two equi-
librium points, namely disease-free equilibrium points and epi-
demic toxoplasmosis equilibrium points in the Lhokseumawe
City. The results of the mathematical analysis model when
the spread of toxoplasmism happened shows that the number
of infected populations is increasing and then decreasing,
it is triggered by increasing population control, so that it
causes the population to be stable. Furthermore, the increase in
the number of controlled population gives an indication that
treatment has affected the spread of toxoplasmostis as very
dangerous to the height of the moon to do the controlling
of the spread of the disease, for instance doing the treatment
of those who have been infected, following the spread of the
disease in the form of the placebo, and changing the type of
treatment in the life and the way of life.

Furthermore, from the research done, the research team
suggested to look at the effectiveness of drug therapy to
influence the spread of toxoplasmosis in the Lhokseumawe
city area, so that the dynamics of the toxoplasmosis epidemic
occur in every condition.
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matical modeling of toxoplasmosis disease in varying size populations,”
Computers & Mathematics with applications, vol. 56, no. 3, pp. 690–
696, 2008.
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spread in cat populations under vaccination,” Theoretical population
biology, vol. 77, no. 4, pp. 227–237, 2010.

[10] M. Yanni and Z. Zulfahmi, “Analisis pemodelan dan simulasi matem-
atika pengendalian epidemi toksoplasmosis,” JTAM (Jurnal Teori dan
Aplikasi Matematika), vol. 3, no. 2, pp. 114–120, 2019.


